Skip to main content

Advertisement

Log in

Probing DNA base pairing energy profiles using a nanopore

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We experimentally show that the voltage driven unzipping of long DNA duplexes by an α-hemolysin pore is sensitive to the shape of the base pairing energy landscape. Two sequences of equal global stability were investigated. The sequence with an homogeneous base pairing profile translocates faster than the one with alternative weak and strong regions. We could qualitatively account for theses observations by theoretically describing the voltage driven translocation as a biased random walk of the unzipping fork in the sequence dependent energy landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Akeson M, Branton D, Kasianowicz JJ, Brandin E, Deamer DW (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys J 77(6):3227–3233

    Article  PubMed  CAS  Google Scholar 

  • Bockelmann U, Viasnoff V (2008) Theoretical study of sequence-dependent nanopore unzipping of DNA. Biophys J 94(7):2716–2724

    Article  PubMed  CAS  Google Scholar 

  • Bockelmann U, Thomen P, Essevaz-Roulet B, Viasnoff V, Heslot F (2002) Unzipping DNAn with optical tweezers: high sequence sensitivity and force flips. Biophys J 82(3):1537–1553

    Article  PubMed  CAS  Google Scholar 

  • Bundschuh R, Gerland U (2005) Coupled dynamics of RNA folding and nanopore translocation. Phys Rev Lett 95(20):208104

    Article  PubMed  CAS  Google Scholar 

  • Collin D, Ritort F, Jarzynski C, Smith SB, Tinoco I, Bustamante C (2005) Verification of the crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437(7056):231–234

    Article  PubMed  CAS  Google Scholar 

  • deGennes PG (2001) Maximum pull out force on DNA hybrids. C R Acad Sci Paris IV:1505–1508

    Google Scholar 

  • Dudko OK, Mathe J, Szabo A, Meller A, Hummer G (2007) Extracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins. Biophys J 92(12):4188–4195

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Manyes S, Brujic J, Badilla CL, Fernandez JM (2007) Force-clamp spectroscopy of single-protein monomers reveals the individual unfolding and folding pathways of i27 and ubiquitin. Biophys J 93(7):2436–2446

    Article  PubMed  CAS  Google Scholar 

  • Gauthier MG, Slater GW (2008) A monte carlo algorithm to study polymer translocation through nanopores. i. theory and numerical approach. J Chem Phys 128(6):065–103

    Article  CAS  Google Scholar 

  • Greenleaf WJ, Woodside MT, Block SM (2007) High-resolution, single-molecule measurements of biomolecular motion. Annu Rev Biophys Biomol Struct 36:171–190

    Article  PubMed  CAS  Google Scholar 

  • Greenleaf WJ, Frieda KL, Foster DA, Woodside MT, Block SM (2008) Direct observation of hierarchical folding in single riboswitch aptamers. Science 319(5863):630–633

    Article  PubMed  CAS  Google Scholar 

  • Harlepp S, Marchal T, Robert J, Leger JF, Xayaphoumine A, Isambert H, Chatenay D (2003) Probing complex RNA structures by mechanical force. Eur Phys J E 12(4):605–615

    Article  PubMed  CAS  Google Scholar 

  • Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93(24):13770–13773

    Article  PubMed  CAS  Google Scholar 

  • Lakatos G, Chou T, Bergersen B, Patey GN (2005) First passage times of driven DNA hairpin unzipping. Phys Biol 2(3):166–174

    Article  PubMed  CAS  Google Scholar 

  • Larson MH, Greenleaf WJ, Landick R, Block SM (2008) Applied force reveals mechanistic and energetic details of transcription termination. Cell 132(6):971–982

    Article  PubMed  CAS  Google Scholar 

  • Li PTX, Bustamante C, Tinoco I (2007) Real-time control of the energy landscape by force directs the folding of RNA molecules. Proc Natl Acad Sci USA 104(17):7039–7044

    Article  PubMed  CAS  Google Scholar 

  • Luo KF, Ala-Nissila T, Ying SC, Bhattacharya A (2007) Heteropolymer translocation through nanopores. J Chem Phys 126(14):145101

    Article  PubMed  CAS  Google Scholar 

  • Mathe J, Visram H, Viasnoff V, Rabin Y, Meller A (2004) Nanopore unzipping of individual DNA hairpin molecules. Biophys J 87(5):3205–3212

    Article  PubMed  CAS  Google Scholar 

  • Meller A, Branton D (2002) Single molecule measurements of DNA transport through a nanopore. Electrophoresis 23(16):2583–2591

    Article  PubMed  CAS  Google Scholar 

  • Meller A, Nivon L, Brandin E, Golovchenko J, Branton D (2000) Rapid nanopore discrimination between single polynucleotide molecules. Proc Natl Acad Sci USA 97(3):1079–1084

    Article  PubMed  CAS  Google Scholar 

  • Meller A, Nivon L, Branton D (2001) Voltage-driven DNA translocations through a nanopore. Phys Rev Lett 86(15):3435–3438

    Article  PubMed  CAS  Google Scholar 

  • Mergny JL, Lacroix L (2003) Analysis of thermal melting curves. Oligonucleotides 13(6):515–537

    Article  PubMed  CAS  Google Scholar 

  • SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95(4):1460–1465

    Article  PubMed  CAS  Google Scholar 

  • Sauer-Budge AF, Nyamwanda JA, Lubensky DK, Branton D (2003) Unzipping kinetics of double-stranded DNA in a nanopore. Phys Rev Lett 90(23):238101

    Article  PubMed  CAS  Google Scholar 

  • Tropini C, Marziali A (2007) Multi-nanopore force spectroscopy for DNA analysis. Biophys J 92(5):1632–1637

    Article  PubMed  CAS  Google Scholar 

  • Vercoutere W, Winters-Hilt S, Olsen H, Deamer D, Haussler D, Akeson M (2001) Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat Biotechnol 19(3):248–252

    Article  PubMed  CAS  Google Scholar 

  • Vercoutere WA, Winters-Hilt S, DeGuzman VS, Deamer D, Ridino SE, Rodgers JT, Olsen HE, Marziali A, Akeson M (2003) Discrimination among individual watson–crick base pairs at the termini of single DNA hairpin molecules. Nucleic Acids Res 31(4):1311–1318

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Comer J, Dimitrov V, Yemenicioglu S, Aksimentiev A, Timp G (2008) Stretching and unzipping nucleic acid hairpins using a synthetic nanopore. Nucleic Acids Res 36(5):1532–1541

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Laurent Lacroix (MNHN) for his precious help with the melting experiments. Financial support was provided by ANR PNANO grant ANR-06-NANO-015-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgile Viasnoff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Materials PDF (118 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viasnoff, V., Chiaruttini, N. & Bockelmann, U. Probing DNA base pairing energy profiles using a nanopore. Eur Biophys J 38, 263–269 (2009). https://doi.org/10.1007/s00249-008-0372-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0372-2

Keywords

Navigation